



BIOLOGÍA NIVEL SUPERIOR PRUEBA 3 Número de convocatoria del alumno

Martes 11 de noviembre de 2014 (mañana)

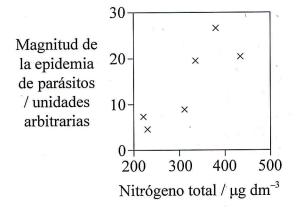
1 hora 15 minutos

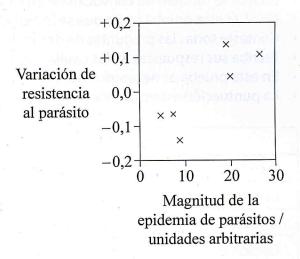
|   |   | Cóc | ligo | del | exar | nen |   |   |
|---|---|-----|------|-----|------|-----|---|---|
| 8 | 8 | 1   | 4    | -   | 6    | 0   | 3 | 3 |

#### **INSTRUCCIONES PARA LOS ALUMNOS**

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas de dos de las opciones.
- Escriba sus respuestas en las casillas provistas.
- En esta prueba es necesario usar una calculadora.
- La puntuación máxima para esta prueba de examen es [40 puntos].

| Opción                                      | Preguntas |
|---------------------------------------------|-----------|
| Opción D — Evolución                        | 1 – 3     |
| Opción E — Neurobiología y comportamiento   | 4 – 6     |
| Opción F — Los microbios y la biotecnología | 7 – 9     |
| Opción G — Ecología y conservación          | 10 – 12   |
| Opción H — Ampliación de fisiología humana  | 13 – 15   |





## Opción D — Evolución

1. La levadura *Metschnikowia bicuspidata* es un parásito de una especie de zooplancton denominada *Daphnia dentifera*. Unos biólogos hicieron un seguimiento de las infecciones de poblaciones de *D. dentifera* en una serie de lagos de Indiana (EE.UU.). Un aumento de los compuestos nitrogenados disueltos en los lagos causa el aumento de las poblaciones de fitoplancton. El *D. dentifera* se alimenta de fitoplancton.

Las gráficas muestran

- la relación entre los niveles de nitrógeno disuelto en el agua y la magnitud de la epidemia de parásitos en la población de *D. dentifera*.
- la relación entre la magnitud de la epidemia de parásitos en la población de *D. dentifera* y la variación de la resistencia (establecida mediante la comparación de las poblaciones de *D. dentifera* antes y después de la epidemia).





[Fuente: adaptado de MA Duffy, et al., (2012), Science, 335, páginas 1636–1638]

| (a) | Indique la relación entre el nitrógeno total y la magnitud de la epidemia de parásitos. | [1] |
|-----|-----------------------------------------------------------------------------------------|-----|
|     |                                                                                         |     |



| (b) | Sugiera razones que expliquen el aumento de la magnitud de la epidemia de parásitos conforme aumenta el nitrógeno total en los lagos.                                                                                |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | ***************************************                                                                                                                                                                              |
|     |                                                                                                                                                                                                                      |
|     |                                                                                                                                                                                                                      |
|     |                                                                                                                                                                                                                      |
|     |                                                                                                                                                                                                                      |
|     |                                                                                                                                                                                                                      |
|     |                                                                                                                                                                                                                      |
|     |                                                                                                                                                                                                                      |
| (c) | Resuma, de acuerdo con la teoría de la selección natural, cómo el aumento de magnitud de la epidemia de parásitos en el <i>D. dentifera</i> tendrá como resultado la evolución de una mayor resistencia al parásito. |
| 181 | •••••••••••••••••••••••••••••••••••••••                                                                                                                                                                              |
|     |                                                                                                                                                                                                                      |
|     | ~.····································                                                                                                                                                                               |
|     |                                                                                                                                                                                                                      |
|     |                                                                                                                                                                                                                      |
|     |                                                                                                                                                                                                                      |
|     |                                                                                                                                                                                                                      |
|     | peces depredadores tienden a alimentarse más de <i>D. dentifera</i> infectados que de <i>D. dentifera</i> infectar.                                                                                                  |
| (d) | Prediga el efecto de la depredación de los peces sobre el nivel de resistencia a los parásitos en las poblaciones de <i>D. dentifera</i> .                                                                           |
|     |                                                                                                                                                                                                                      |
|     |                                                                                                                                                                                                                      |
|     | ***************************************                                                                                                                                                                              |
|     |                                                                                                                                                                                                                      |
|     | ***************************************                                                                                                                                                                              |
|     |                                                                                                                                                                                                                      |



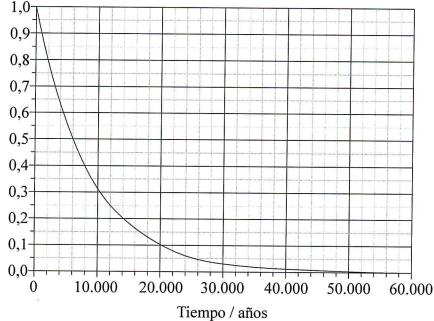
|   | 10  |                          | $\mathbf{r}$ |       |      |       |
|---|-----|--------------------------|--------------|-------|------|-------|
| 1 | Inc | ION                      | 1).          | conti | MILA | non   |
| • | OUC | $\iota \cup \iota \iota$ | L.           | COmin | inuc | iUIII |
|   |     |                          |              |       |      |       |

2.

| (a) | Indique dos incertidumbres en el registro fósil que planteen problemas para su uso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | al estudiar la evolución.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [2] |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _   |
| (b) | Defina el período de semidesintegración (semivida) de un radioisótopo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     | and the equipment of the companies of th |     |
|     | A the first material at the control of the control  |     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |



(Continuación: opción D, pregunta 2)


La cueva de Lascaux, en el centro de Francia, representa uno de los ejemplos mejor conservados de arte rupestre paleolítico. Se dató el carbón vegetal usado en las pinturas usando el método del carbono 14.

(c) (i) Usando la gráfica, estime la edad de una muestra de carbón vegetal que contuviera una cantidad relativa de carbono 14 (<sup>14</sup>C) igual a 0,13.





Cantidad relativa de <sup>14</sup>C



| <br> |  |
|------|--|
|      |  |
|      |  |
|      |  |
|      |  |

| (ii) | Deduzca la razón por la que la datación del carbono no es precisa para muestras |     |
|------|---------------------------------------------------------------------------------|-----|
|      | con una antigüedad superior a 50.000 años.                                      | [1] |
|      |                                                                                 |     |

| <br> | <br> | <br> |
|------|------|------|
|      |      |      |
| <br> | <br> | <br> |



(Continuación: opción D, pregunta 2)

(d) Distinga entre evolución genética y evolución cultural.

[2]



(Opción D: continuación)

|   | de los organismos vivos.                |
|---|-----------------------------------------|
|   |                                         |
|   |                                         |
|   |                                         |
|   |                                         |
|   |                                         |
|   |                                         |
|   |                                         |
|   |                                         |
|   | *************************************** |
|   |                                         |
|   |                                         |
|   |                                         |
|   |                                         |
|   |                                         |
|   |                                         |
|   |                                         |
|   |                                         |
|   | *************************************** |
|   |                                         |
|   |                                         |
|   |                                         |
|   |                                         |
|   |                                         |
|   |                                         |
| • |                                         |
|   |                                         |
| • |                                         |
| • |                                         |

Fin de la opción D



No escriba en esta página.

Las respuestas que se escriban en esta página no serán corregidas.

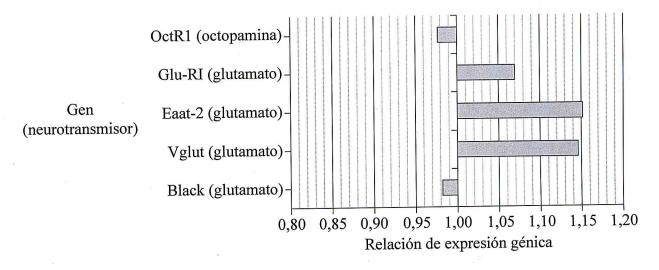


1

# Opción E — Neurobiología y comportamiento

4. Las abejas melíferas (*Apis mellifera*) viven en colonias en las que algunas abejas obreras se comportan como exploradoras. Las abejas exploradoras comunican la información sobre las nuevas fuentes de alimento a las abejas obreras no exploradoras de la colonia.

| (a) |   |   |   |       |   |   |       | o l<br>10 |     |   |   |   |       |     |   |     | C    | ю      | m | ıu  | n | ic | a | n | la  | a I | ub | oio | ca | ac | ić | 'n | d | le | la | ıs | n | u | ev | 'a | S : | fu | e | nt  | es | 3 ( | le | : a | ıli | in | ne | n | tc | ) | 1 | [2] |
|-----|---|---|---|-------|---|---|-------|-----------|-----|---|---|---|-------|-----|---|-----|------|--------|---|-----|---|----|---|---|-----|-----|----|-----|----|----|----|----|---|----|----|----|---|---|----|----|-----|----|---|-----|----|-----|----|-----|-----|----|----|---|----|---|---|-----|
|     | • |   | • | <br>  |   |   |       | •         | • • |   |   | • | <br>  | . • |   |     | <br> | . 11•) | • |     |   |    | • |   | •   |     |    |     | •  |    |    | •  | • |    |    | ٠  | • |   |    |    |     |    |   | •   |    |     |    | • • |     |    | •  | • |    |   |   |     |
|     |   | • | ٠ |       | ٠ | • | <br>• | •         |     |   | ٠ |   | <br>  | •   | ٠ | • ; | <br> | •      | • | •   |   |    |   | ٠ | • 1 |     |    |     |    |    |    |    | • |    |    | •  | • |   | •  |    |     |    | • | ٠   |    |     | •  |     |     |    | ٠  |   |    |   |   |     |
|     | • |   |   | <br>• | • | • | <br>٠ | ٠         |     | • | • | • | <br>٠ | ٠   | • |     | <br> | ٠      | • | • • |   | ٠  | • | • | •   |     |    | ٠   |    | ٠. |    | •  | ٠ | ٠. |    | •  | • |   |    | •  |     |    | • | • 0 |    | •   |    |     |     |    | •  |   |    | • |   |     |
|     |   | • |   |       |   | • |       | •         |     |   | • |   |       | •   |   |     | <br> | ٠      | ٠ | • • |   | •  | • | ٠ |     |     | •  | ٠   | ٠  |    |    | ٠  | • |    | ٠  | •  | • |   |    | •  |     |    | • | •   |    | •   | ٠  |     |     | •  | ٠  | • |    |   |   |     |



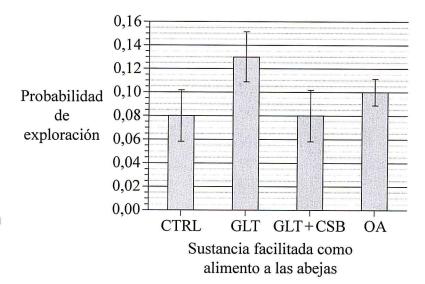

(Continuación: opción E, pregunta 4)

Unos biólogos compararon a las abejas exploradoras de fuentes de alimento con las obreras no exploradoras para ver si la expresión génica correspondiente a la señalización por neurotransmisores difiere en sus células cerebrales. Los científicos investigaron algunos genes de neurotransmisores, entre ellos un gen para la octopamina y cuatro genes para el glutamato.

Relación de expresión génica =  $\frac{\text{expresión génica en abejas exploradoras}}{\text{expresión génica en obreras no exploradoras}}$ 

Se calculó la relación de la expresión génica. Los resultados se muestran en la gráfica.




[Fuente: adaptado de ZS Liang, et al., (2012), Science, 335, páginas 1225-1227]

| ) | Indique qué significa la relación de 1,00.                                            |     |
|---|---------------------------------------------------------------------------------------|-----|
|   |                                                                                       |     |
|   |                                                                                       |     |
|   |                                                                                       |     |
|   | Indique qué gen muestra la máxima expresión en las abejas exploradoras en comparación |     |
|   | con las obreras no exploradoras.                                                      | [1] |



(Continuación: opción E, pregunta 4)

Posteriormente los biólogos alimentaron a las abejas no exploradoras con distintas sustancias para ver si éstas fomentaban un comportamiento de exploración. La gráfica muestra el efecto de estas sustancias.



| Clave      | e:                        |
|------------|---------------------------|
| CTRI       | L=control                 |
| GLT        | = glutamato               |
| <b>CSB</b> | = Chicago Sky Blue        |
|            | (bloqueador de glutamato) |
| OA         | = octopamina              |

[Fuente: adaptado de ZS Liang, et al., (2012), Science, 335, páginas 1225-1227]

(d) Calcule cuánto aumenta la probabilidad de que las obreras no exploradoras presenten un comportamiento de exploración cuando se las alimenta con GLT (glutamato) y con OA (octopamina).

[2]

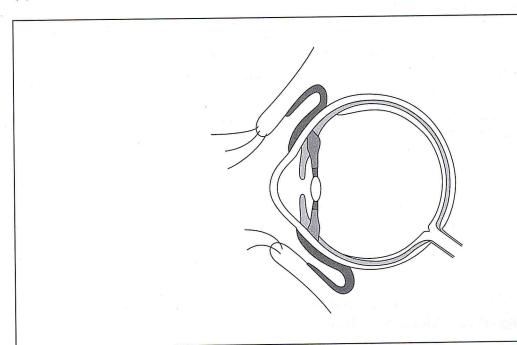
| GLT: | *************************************** |
|------|-----------------------------------------|
| ODI. |                                         |
|      |                                         |
| OA:  |                                         |
|      |                                         |
|      |                                         |

(e) Explique cómo podría haber afectado la selección natural a la evolución del comportamiento de exploración en las abejas de melíferas. [3]

| • |   | • | • | • |  | • | • | • | • | • | • | • | • | • | • |   |   |   |   | • | • |   |   |   |   |   | • | • | • |   |   | <br> |     |        |   |      |    |   |    | ٠    |       |   |         |       |   |    |   |     |   |   |   |     |     |    |     |       |       |       |   |       |  |
|---|---|---|---|---|--|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|------|-----|--------|---|------|----|---|----|------|-------|---|---------|-------|---|----|---|-----|---|---|---|-----|-----|----|-----|-------|-------|-------|---|-------|--|
|   |   |   |   |   |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |      |     |        |   |      |    |   |    |      |       |   |         |       |   |    |   |     |   |   |   |     |     |    |     |       |       |       |   |       |  |
|   |   |   |   |   |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |      |     |        |   |      |    |   |    |      |       |   |         |       |   |    |   |     |   |   |   |     |     |    |     |       |       |       |   |       |  |
| • |   | • | • |   |  |   |   |   | ٠ | • | • |   |   |   |   |   |   |   | • | • | ٠ |   |   | • |   | • | • |   |   |   |   |      |     |        |   |      |    |   |    |      |       |   |         |       |   |    |   |     |   |   |   |     |     |    |     |       | •     |       |   |       |  |
|   |   |   |   |   |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |      |     |        |   |      |    |   |    |      |       |   |         |       |   |    |   |     |   |   |   |     |     |    |     |       |       |       |   |       |  |
|   |   |   |   |   |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |      |     |        |   |      |    |   |    |      |       |   |         |       |   |    |   |     |   |   |   |     |     |    |     |       |       |       |   |       |  |
|   | • | • | • |   |  |   |   |   |   | • |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | • | ٠ |   |   |   |   |      |     |        |   |      |    |   |    | •    |       |   |         |       |   |    |   |     |   |   |   |     |     |    |     |       |       |       |   |       |  |
|   |   |   |   |   |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |      |     |        |   |      |    |   |    |      |       |   |         |       |   |    |   |     |   |   |   |     | -   |    |     |       |       |       |   |       |  |
|   |   |   |   |   |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |      |     |        |   |      |    |   |    |      |       |   |         |       |   |    |   |     |   |   |   |     |     |    |     |       |       |       |   |       |  |
|   |   |   |   |   |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |      |     |        |   |      |    |   |    |      |       | _ |         |       |   | -  |   | 120 |   |   |   | 2   |     | _  | -   | 20 02 | 21 15 | 20 10 |   |       |  |
|   |   |   |   |   |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |      |     |        |   |      |    |   | -  | -    | •     | • |         |       | - | a. | • |     |   |   | 8 | 2 1 |     |    | 8.5 |       |       |       | • | ė.    |  |
|   |   |   |   |   |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |      |     |        |   |      |    |   |    |      |       |   |         |       |   |    |   |     |   |   |   |     |     |    |     |       |       |       |   |       |  |
|   |   |   |   |   |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | ÷ |   |   |   |   |   |   |   |   |      | 0 5 |        |   |      | 2  | 2 | 2. | 1.   | _     | _ |         |       |   |    |   | _   |   |   |   |     |     |    |     |       |       |       |   |       |  |
|   |   |   |   |   |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |      |     |        |   | -    | •  | • | •  |      |       | • |         |       | • | •  | • | •   | • | • | • | •   | •   | ٠. | •   | •     | •     |       | • | <br>• |  |
|   |   |   |   |   |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |      |     |        |   |      |    |   |    |      |       |   |         |       |   |    |   |     |   |   |   |     |     |    |     |       |       |       |   |       |  |
|   |   |   |   |   |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | _ |   |   |   | e |   |   |      |     | or non |   | 0.00 | 0. |   | -  | 0007 | 10000 |   | 100 100 | 11 30 |   |    |   |     |   |   |   |     |     |    |     |       |       |       |   |       |  |
|   |   |   |   |   |  |   |   |   |   |   |   |   |   |   |   | • | • | • | - | • | • | • | Ť | ā | ē | 8 |   | • | • | 1 | • | •    | 2 8 | •      | • | •    | •  | • | •  | •    | •     | • | •       | •     | • | •  | • | •   | • | • | • | •   | • • | •  |     |       |       |       |   |       |  |
|   |   |   |   |   |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |      |     |        |   |      |    |   |    |      |       |   |         |       |   |    |   |     |   |   |   |     |     |    |     |       |       |       |   |       |  |



(Opción E: continuación)


| 5. | (a) | Enumere la secuencia   | de | componentes | de | un | arco | reflejo | en | el | caso | de | un | reflejo |
|----|-----|------------------------|----|-------------|----|----|------|---------|----|----|------|----|----|---------|
|    |     | de retirada del dolor. |    |             |    |    |      |         |    |    |      |    | ž  |         |

[3]

| ***** | <br> |                                           |
|-------|------|-------------------------------------------|
|       |      |                                           |
|       | <br> |                                           |
|       |      |                                           |
|       |      |                                           |
|       |      |                                           |
|       |      |                                           |
|       | <br> | na da |

(b) Rotule el punto ciego y el humor acuoso en el diagrama del ojo.

[1]



ų

[Fuente: adaptado de http://medical.cdn.patient.co.uk/images/113.gif]

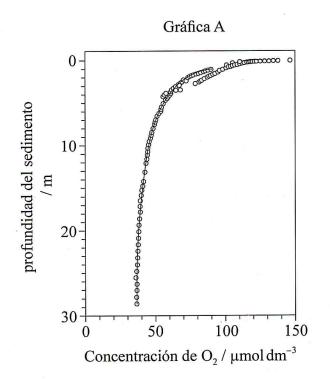
| (c) Resuma cómo las endorfinas actúan como analgés |
|----------------------------------------------------|
|----------------------------------------------------|

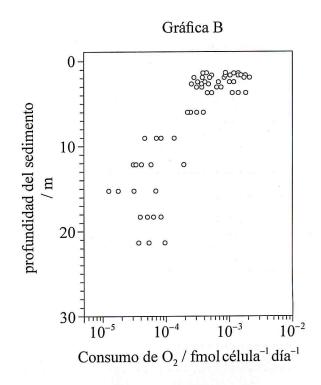
[1]

| <br> | <br> | • • • | <br>• • | • • | • • | • • | • • | • | • • | • • | <br>• • | • • | • • | • • | • • | • • | • • | • • | • • | • • | • • | • • • |   |
|------|------|-------|---------|-----|-----|-----|-----|---|-----|-----|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|---|
|      |      |       | <br>    |     |     |     |     |   |     |     | <br>    |     |     |     |     |     |     |     |     |     |     |       | • |
| <br> | <br> |       | <br>    |     |     |     |     |   |     |     |         |     |     |     |     |     |     |     |     |     |     |       |   |



(Opción E: continuación)


| 6. | Diseñe un experimento sobre un invertebrado concreto para investigar una quinesis o una taxia. | [6] |
|----|------------------------------------------------------------------------------------------------|-----|
|    | · ·                                                                                            |     |
|    |                                                                                                |     |
|    |                                                                                                |     |
|    |                                                                                                |     |
|    |                                                                                                |     |
|    |                                                                                                |     |
|    |                                                                                                |     |
|    |                                                                                                |     |
|    | ***************************************                                                        |     |
|    |                                                                                                |     |
|    |                                                                                                |     |
|    |                                                                                                |     |
|    | ***************************************                                                        |     |
|    |                                                                                                |     |
|    |                                                                                                |     |
|    |                                                                                                |     |
|    | ***************************************                                                        |     |
|    |                                                                                                |     |
|    |                                                                                                |     |
|    |                                                                                                |     |
|    |                                                                                                |     |
|    |                                                                                                |     |
|    | ***************************************                                                        |     |
|    | ***************************************                                                        |     |
|    |                                                                                                |     |
|    |                                                                                                |     |
|    | ***************************************                                                        |     |
|    | ***************************************                                                        |     |
|    | ***************************************                                                        |     |
|    |                                                                                                |     |
|    |                                                                                                |     |


Fin de la opción E



### Opción F — Los microbios y la biotecnología

7. En el fondo de los océanos se forman sedimentos marinos. Estos sedimentos contienen materia orgánica que procede de las aguas superficiales. Unos científicos analizaron muestras extraídas al perforar el fondo de la zona norte del Océano Pacífico, que representan 86 millones de años de sedimentación. La gráfica A muestra las concentraciones de oxígeno presentes en 28 metros de sedimento y la gráfica B muestra el consumo de oxígeno por célula presente en 22 metros de sedimentos medidos en femtomoles (fmol=10<sup>-15</sup> mol).





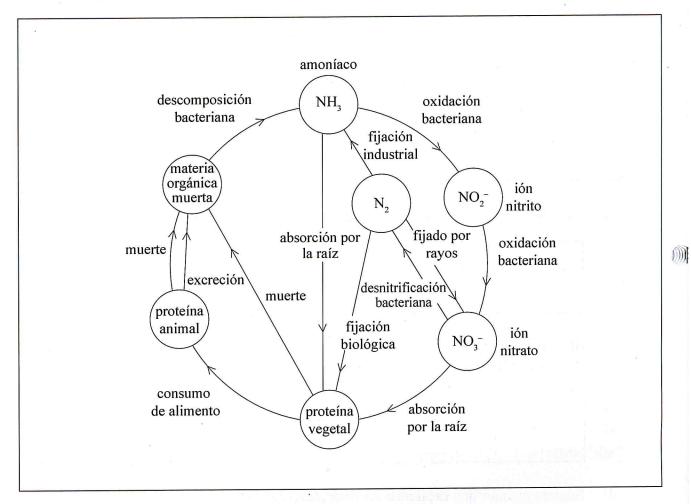
[Fuente: adaptado de H Røy, et al., (2012), Science, 336, páginas 922-925]

| (a) | Estime la concentración de | oxígeno | más baja | que hay | en estos | sedimentos. |
|-----|----------------------------|---------|----------|---------|----------|-------------|
|-----|----------------------------|---------|----------|---------|----------|-------------|

[1]

|  | ٠. | <br> | <br> | <br> | <br>$\mu mol dm^{-3}$ |
|--|----|------|------|------|-----------------------|




| (Continuación) | amaián | $\Gamma$ | ****     | 7 |
|----------------|--------|----------|----------|---|
| (Continuación: | opcion | Γ,       | pregunia | 1 |

| (b) | Compare las tendencias en el consumo de oxígeno por célula y en la concentración de oxígeno presente en los sedimentos.           | [2] |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|-----|
|     |                                                                                                                                   |     |
| (c) | (i) Indique la actividad microbiana que podría influir en la concentración de oxígeno.                                            | [1] |
|     |                                                                                                                                   |     |
| er  | (ii) Indique una posible fuente de alimento para la comunidad microbiana presente en los sedimentos.                              | [1] |
|     |                                                                                                                                   |     |
| (d) | Sugiera razones que expliquen las diferencias de consumo de oxígeno entre las células que se encuentran a 2 metros y a 22 metros. | [2] |
|     | ***************************************                                                                                           |     |
|     | ***************************************                                                                                           |     |
|     | ***************************************                                                                                           |     |
|     |                                                                                                                                   |     |



## (Opción F: continuación)

8. (a) El diagrama muestra un ciclo del nitrógeno.



[Fuente: adaptado de www.brighthub.com]

En el diagrama, identifique los procesos en los que intervienen las siguientes bacterias.

(i) Rhizobium X (rotule con una X)

[1]

W.

(ii) Nitrobacter Y (rotule con una Y)

[1]



| inua | ción: opción F, pregunta 8)                                 |    |
|------|-------------------------------------------------------------|----|
| (b)  | Resuma el uso de Saccharomyces en la producción de cerveza. | I  |
|      | · · · · · · · · · · · · · · · · · · ·                       |    |
|      | ***************************************                     |    |
|      | ***************************************                     |    |
|      |                                                             |    |
|      |                                                             |    |
| (c)  | (i) Indique la función de la transcriptasa inversa.         | L  |
|      |                                                             |    |
|      |                                                             |    |
| (8)  | (ii) Indique un virus que produzca transcriptasa inversa.   |    |
|      |                                                             | 1  |
|      |                                                             | [  |
|      |                                                             | [- |

Indique las características de las endotoxinas.

(d)

(La opción F continúa en la página siguiente)



[1]

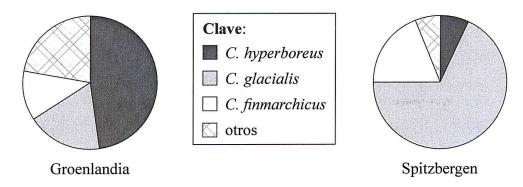
(Opción F: continuación)

| • | ٠ | • | 9   |    | 6. 8 |     |      | • | • | • | ٠ | • | • |   |      |      |   |     | •   | • | • | ٠ | • | • | •   | •     | ٠ | • | ٠ | • | 1 | •   | •    | • | • | • | • | ٠ | • | •   | • | •    | •     | •    | • | ٠ | •     | •   | •   | •   | •     | •   | • | • | •   | ٠ | • | •    | •     | •   | •    | ٠ | ٠ | ٠ | • | • | 9    | •   | • 1 | •    | ٠     | ٠    | ٠   | •            | •   | •   | •  |  |
|---|---|---|-----|----|------|-----|------|---|---|---|---|---|---|---|------|------|---|-----|-----|---|---|---|---|---|-----|-------|---|---|---|---|---|-----|------|---|---|---|---|---|---|-----|---|------|-------|------|---|---|-------|-----|-----|-----|-------|-----|---|---|-----|---|---|------|-------|-----|------|---|---|---|---|---|------|-----|-----|------|-------|------|-----|--------------|-----|-----|----|--|
| • | • | • | •   |    |      | 1 9 | 5 0  |   | ٠ | • | • | • | ٠ |   | ,    |      | • |     | ٠   | ٠ | ٠ | ٠ | • | ٠ | •   | •     | ٠ | ٠ | • | • |   | •   | ٠    | • | • | • | ٠ | ٠ | , | 1 1 | • | ٠    | •     | •    | • | ٠ | ٠     | •   | •   | •   | •     | •   | • | • | •   | ٠ | • | •    | •     | •   | •    | • | • | ė | • | • | 1 19 |     |     |      | •     | ٠    | ٠   | ٠            | ٠   | ٠   | ٠  |  |
|   | • |   | ,   |    | er 3 |     | 0 10 |   |   |   |   |   | • |   |      |      |   |     | e • |   | • | • |   |   | •   | •     | • |   |   |   |   | •   | •    |   | • | • |   |   |   |     |   | •    | •     | •    | • |   |       | •   |     | • 1 | •     | • : |   |   |     |   |   | •    | •     | •   |      | • |   |   |   |   |      |     |     | •::: |       |      |     |              |     |     |    |  |
| • | • |   | ,   |    |      |     |      |   | • |   |   |   |   |   |      |      |   |     | •   | ٠ | • | • | ٠ | ٠ | •   | •     | ٠ | • | • |   |   |     |      | • |   | • | • |   |   |     |   | •    | •     | •    | • | • | •     | ·   |     |     | •     |     |   |   |     |   |   |      | •     | •   | •    | • | • |   |   |   |      | 6 ) |     | •    |       |      |     | •            | ·   | ·   | •  |  |
|   | • | • | •   |    |      |     |      |   | • | * | • | • | • |   | •    |      | • |     | •   | • | • | • | • | • | •   | •     | • | • | ٠ | • |   | •   | ٠    | • | • | • | ٠ | • |   |     |   | •    | •     | •    | • | • | •     | •   | •   | •   | •     |     |   |   | •   | • |   |      |       |     | •    | • | • | • | ٠ | • | •    | e j |     | • 1  | •     |      | •   |              | ٠   | ٠   |    |  |
|   |   | • |     |    |      |     | 0.3  |   |   |   |   |   | • |   | 2 34 |      |   |     |     | • | • | • |   |   |     | •     | • | • | • |   |   |     |      |   | • |   |   |   |   |     |   |      | • :   |      | • | • |       |     |     |     | • 2 1 |     |   |   | • * |   |   |      | •     | •   |      | • | • | • |   |   |      | юэ  |     | •    | • : : |      |     | •            |     |     |    |  |
|   | • | • |     |    |      |     |      | • |   |   |   |   |   |   |      |      |   |     |     | • |   | • |   |   |     | •     | • | • | • |   |   |     |      |   |   |   | • |   |   |     |   |      |       |      | • |   | •     | •   |     |     |       |     |   |   | •   |   |   |      |       |     | •    | • |   |   |   | ÷ |      | . 1 |     | •    |       |      |     |              |     | ÷   | •  |  |
|   |   |   | •   |    |      |     | 1 1  | • | • | • |   | • |   | • | 1 19 |      |   |     | ٠   |   |   | • | ٠ |   |     |       | • | • |   | • |   |     |      |   | • |   | • |   |   | , , |   |      |       | •    | • |   |       |     |     |     |       |     |   |   | •   |   |   | 1    |       | •   | •    |   | • |   | • |   |      | , , |     |      | •     | •    | •   | •            |     | ×   | •  |  |
| • |   |   | 7.4 |    |      |     |      |   |   |   |   |   |   |   |      | 6 74 |   |     |     | • |   |   | • |   |     |       |   | • |   |   |   |     |      |   |   |   |   |   |   |     |   |      |       |      |   | • |       |     |     |     |       |     |   |   | • 6 |   |   |      |       |     |      |   | • |   |   |   |      |     |     |      | • 1 1 |      |     |              |     |     |    |  |
|   |   |   | 3   |    |      |     |      |   |   |   |   |   |   |   |      |      |   |     |     |   |   |   |   |   |     |       |   |   |   |   |   | 2   |      |   |   |   |   |   |   |     |   |      |       |      |   |   |       |     |     |     |       |     |   |   |     |   |   |      | •     |     |      | • | • | • | • |   |      |     |     |      | . 1   | •    |     |              |     |     |    |  |
|   |   |   |     |    |      |     |      |   |   |   |   |   |   |   |      |      |   |     |     |   |   |   |   |   |     |       |   |   |   |   |   |     |      |   |   |   |   |   |   |     |   |      |       |      |   |   |       |     |     |     |       |     |   |   |     |   |   |      |       |     |      |   |   |   |   |   |      |     |     |      |       |      |     |              |     |     |    |  |
|   |   |   |     |    |      |     |      |   |   |   |   |   |   |   |      |      |   |     |     |   |   |   |   |   |     |       |   |   |   |   |   |     |      |   |   |   |   |   |   |     |   |      |       |      |   |   |       |     |     |     |       |     |   |   |     |   |   |      |       |     |      |   |   |   |   |   |      |     |     |      |       |      |     |              |     |     |    |  |
| • | • | • | •   |    | •    |     |      |   |   |   |   |   |   |   |      |      |   |     |     |   |   |   |   |   |     |       |   |   |   |   |   |     |      |   |   |   |   |   |   |     |   |      |       |      |   |   |       |     |     |     |       |     |   |   |     |   |   |      |       |     |      |   |   | • | • | ٠ | •    | ٠   | •   |      |       |      | 5 8 | •            | •   | •   | •  |  |
| • | • | • | •   | 51 | •    |     |      |   |   |   |   |   |   |   |      |      |   |     |     |   |   |   |   |   |     |       |   |   |   |   |   |     |      |   |   |   |   |   |   |     |   |      |       |      |   |   |       |     |     |     |       |     |   |   |     |   |   |      |       |     |      |   |   | • | • | • | •    | •   | •   | _    |       |      |     | <b>1</b> 8 8 | • • | • : | •  |  |
| ٠ | • | • |     |    |      |     |      |   |   |   |   |   |   |   |      |      |   |     |     | • |   |   |   |   |     |       |   |   |   |   |   |     |      |   |   |   |   |   |   |     |   |      |       |      |   |   |       |     |     |     |       |     |   |   |     |   |   |      |       |     |      |   |   |   |   |   |      |     |     |      |       |      |     |              |     |     |    |  |
| • | • | • | •   |    | •    | •   | •    | • | • | • | ٠ | • | • | ٠ | •    | ٠    | ٠ | ٠   | •   | • | • | • | • | • | ٠   | •     | • | • | • | • | • | 0.0 | •    | • | ٠ | * | ٠ | ٠ | • | •   |   |      | •     | •    | • | • | •     | •   | •   |     | •     | •   | • |   | v j |   | 1 |      |       | •   | •    | • | • | • | • | • | ٠    | ٠   | ٠   | •    |       |      |     | •            | •   | • • |    |  |
| • | • | • | •   |    | •    | •   | •    | • | • | • | • | • | • | • | •    |      | • | 110 | •   | • | • | • | • | • | •   | •     | • | • | • | • |   | 0.0 | • 11 | • | • | • | • | • | • |     |   | 6 10 |       | •    | • | • | • 8 • | • • |     |     | •     | •   | ٠ | • |     |   |   |      | •     | •   | •    | • | • | • | • | • | •    | ٠   | ٠   | •    |       |      | K 9 | •11 11       | • 1 | •   | •  |  |
| • | • | • | •   |    | •    |     |      | • | • | • | • | • | • | • | •    | ٠    | • | ٠   | ٠   | ٠ | • | ٠ | • | • | •   | •     | ٠ | • | • | • | • | 6 9 | •    | • | • | • | • | • | • | ٠   |   |      | i i   | •    | • |   |       |     |     |     | •     | •   | • | • | •   |   | • |      |       | •   | •    | • | • | • | • | • | •    | ٠   | ٠   |      | •     |      |     | <b>.</b> 1   | • • |     | ě  |  |
| ٠ | ٠ | • | •   |    | •    | •   | •    | • | • | ٠ | ٠ | ٠ | ٠ | • | •    | ٠    | ٠ | •   | •   | ٠ | ٠ | • | • | • | •   |       | • | • | • | • | • |     | •    | • | • | • | • | • | • | ٠   | • | •    | Ç     |      | • |   |       |     | •   | •   | •     | •   | • | • |     |   | ٠ |      |       | •   |      | • | • |   | • | • | •    | •   | •   | •    | •     |      |     |              | •   |     |    |  |
|   | • | • | •   |    |      | •   | •    | • | • | • | • | • | • | • | •    | •    | • | •   | •   | • |   | • | • | • | • 0 |       | • | • | • | • | • |     | •    |   | • | • | • | • | • |     |   |      |       |      |   |   |       |     | •   | •   | •     | •   | • |   |     | • | • | •    |       |     |      |   |   | • | • | ٠ | ٠    | ٠   | •   | •    | _     | •    |     | -            | •   |     |    |  |
|   | • | • | •   | •  | •    | •   | •    | • | • | • | • | ٠ | • | • | ٠    | •    | • | •   | ٠   | ě | ٠ | • | • | • | •   | ě.    | • | • | • | • | • |     | •    | • | ٠ | • | • | • | • | ٠   | • |      | i s   |      | • |   |       |     | •   | •   | •     |     | ٠ |   |     | • | • | •    |       |     | 2 10 |   |   |   |   | • | ٠    | •   | •   |      | ٠     |      | , , |              | • / |     | Ē  |  |
| • | • | • | •   | •  | •    | •   | •    | • | • | • | • | • | ٠ | • | •    | •    | • | •   | •   | ٠ | ٠ | ٠ | • | • | •   |       |   | • | ٠ | • | ٠ |     | •    | • | • | ٠ | ٠ | • | • | ٠   | ٠ | •    |       |      |   | _ |       |     | •   | •   | •     | •   | ٠ | ٠ |     | • |   | •    |       |     | •    | • | • |   | • | • | •    | •   | •   | •    |       |      |     |              | •   |     | •  |  |
|   | ٠ |   | •   |    |      | •   | •    | • | ٠ | • | ٠ | • | • | • |      | •    | ٠ | ٠   | ٠   | ٠ | ٠ | • | • | • |     | •     | • | ٠ |   | • | • |     |      | • | • | ٠ | • | ٠ |   |     |   |      | 6.0   |      |   |   |       |     | •   |     | ٠     | •   | • |   |     | • | • |      |       |     |      | • |   |   | • | • | •    | •   |     |      |       |      |     | • 11 1       | •   | •   |    |  |
| ě |   | ٠ |     | 1  |      |     |      | • | • | • | • | • | • |   |      |      | • |     |     |   |   |   | • | • |     |       |   | • |   |   | • |     |      | • | • | • |   |   |   |     |   |      | e: 11 |      |   |   |       |     |     |     |       | •   | • |   |     |   |   | . 14 |       |     |      |   | ě |   | • | ٠ | •    | •   |     |      |       |      | , , |              | • 1 |     | £. |  |
| ٠ | • |   | •   |    |      | •   |      |   | • | • | • | • | • |   |      |      | ٠ | •   | ٠   | • |   | • | • |   |     | • 1   | ٠ |   |   | × | • |     |      | • | • | • | ě | • |   | •   |   |      |       |      |   |   |       |     | g • | •   | •     |     | ٠ |   |     |   | • |      |       | • 1 |      | • | • |   | • | • | •    |     | •   |      |       |      |     | . ,          |     |     | •  |  |
| • | ٠ | • | •   | •  | •    |     |      | • | • | • | • | • | • | • |      | •    |   | •   | •   | • | ٠ |   |   |   |     | •     | • |   | ٠ | • |   |     |      | • | • | • | • | ٠ |   | •   | • | •    | 6.9   |      |   |   |       |     |     | •   | ٠     | •   | • |   |     | • |   |      | et et |     |      | • |   |   | • | • | ٠    | •   | •   |      | •     |      | ,   |              | , , | . , | e  |  |
|   |   |   |     |    |      |     |      |   |   |   |   |   |   |   |      |      |   |     |     |   |   |   |   |   |     | • : ) |   |   |   |   |   |     |      | • |   |   |   |   |   |     |   |      | 0.2   | 0.00 |   |   |       |     |     |     |       |     |   |   |     |   |   |      |       |     |      |   |   |   |   |   |      |     |     |      |       | . 19 |     | . ,          | . , |     |    |  |

Fin de la opción F

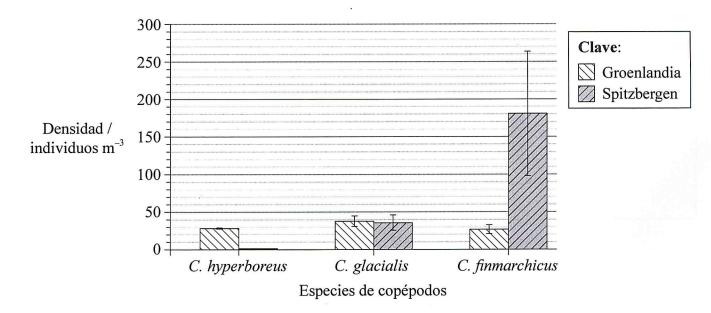


No escriba en esta página.


Las respuestas que se escriban en esta página no serán corregidas.



### Opción G — Ecología y conservación


10. El mérgulo atlántico (*Alle alle*) es una de las aves depredadoras más abundantes del entorno marino del Ártico. Se alimenta principalmente de copépodos del zooplancton (*Calanus*) que viven en las aguas superficiales de los mares del Ártico. En una investigación se estudiaron los patrones de alimentación de los mérgulos atlánticos en dos emplazamientos diferentes. Uno se encontraba frente a la costa de Groenlandia, en una zona sometida a una corriente de agua fría que se dirigía hacia el sur procedente del Ártico (0°C). El otro estaba enfrente de la isla de Spitzbergen, en una zona bajo el influjo de una corriente de agua más templada procedente del Océano Atlántico (+5°C).

Los diagramas circulares muestran la composición del alimento traído del mar por los progenitores a sus polluelos. De las especies de *Calanus* ingeridas, el *C. hyperboreus* tiene el triple de contenido energético que el *C. glacialis* y 25 veces más energía que *C. finmarchicus*.



[Fuente: adaptado de NJ Karnovsky, et al., (2011), Marine Ecology Progress Series, 440, páginas 229-240]

El diagrama de barras muestra las densidades de las especies de copépodos que se encuentran en las aguas frente a la costa de Groenlandia y de Spitzbergen.



[Fuente: adaptado de NJ Karnovsky, et al., (2010), Marine Ecology Progress Series, 415, páginas 283-293]



| 1 | Continuación: | opción | G  | pregunta | 1 | 0 | ) |
|---|---------------|--------|----|----------|---|---|---|
| ١ | Committee     | Peren  | ш, | P        |   |   | / |

| (a) | Estime la proporción de <i>C. hyperboreus</i> presente en el alimento dado a los polluelos del emplazamiento de Groenlandia.                                         | [1] |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | %                                                                                                                                                                    |     |
| (b) | Distinga entre las dietas de los polluelos de cada uno de los dos emplazamientos.                                                                                    | [2] |
|     |                                                                                                                                                                      |     |
| (c) | Calcule la diferencia de densidad de <i>C. finmarchicus</i> que hay entre el emplazamiento de Spitzbergen y el emplazamiento de Groenlandia, indicando las unidades. | [1] |
|     |                                                                                                                                                                      |     |
| (d) | Sugiera, dando una razón para ello, por qué se en Spitzbergen les da de comer a los polluelos mucho más <i>C. glacialis</i> que en Groenlandia.                      | [1] |
|     |                                                                                                                                                                      |     |



(Continuación: opción G, pregunta 10)

| (e) | Deduzca la relación entre la temperatura del agua en la que los mérgulos se alimentan y la tasa de crecimiento de sus polluelos, basándose en las pruebas aportadas en los diagramas circulares y en el diagrama de barras. | [3] |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |                                                                                                                                                                                                                             |     |
|     |                                                                                                                                                                                                                             |     |
|     |                                                                                                                                                                                                                             |     |
|     |                                                                                                                                                                                                                             |     |
|     |                                                                                                                                                                                                                             |     |
|     |                                                                                                                                                                                                                             |     |
|     |                                                                                                                                                                                                                             |     |
|     |                                                                                                                                                                                                                             |     |
|     |                                                                                                                                                                                                                             |     |
|     |                                                                                                                                                                                                                             |     |



| 10 .1     | ~    | and the second discount and | . /  |
|-----------|------|-----------------------------|------|
| (( Incion | ( T. | continua                    | CION |
| Operon    | U.   | Communica                   |      |

11.

| (a) | Enumere dos métodos de conservación ex situ.                                               | [2] |
|-----|--------------------------------------------------------------------------------------------|-----|
|     | 1.    2.                                                                                   |     |
| (b) | Resuma el concepto de máximo rendimiento sostenible en la conservación de stocks de peces. | [2] |
|     |                                                                                            |     |
| (c) | Indique cómo suele variar la diversidad de especies durante la sucesión primaria.          | [2] |
|     |                                                                                            |     |

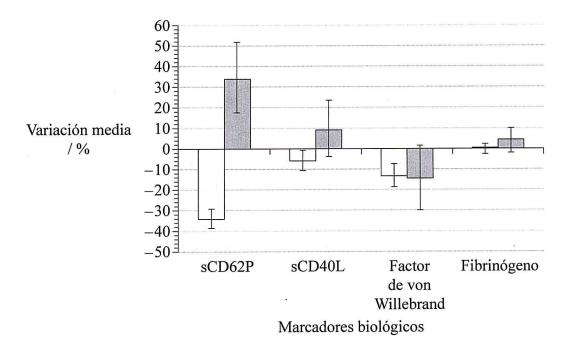


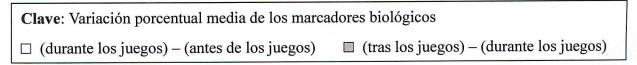
| (Opción G: | continuación) |
|------------|---------------|
|------------|---------------|

| 12.  | Discuta los efectos que causan las especies alóctonas sobre los ecosistemas, dando un ejemplo concreto. | [6]  |
|------|---------------------------------------------------------------------------------------------------------|------|
|      |                                                                                                         |      |
|      |                                                                                                         |      |
|      |                                                                                                         |      |
|      |                                                                                                         |      |
|      |                                                                                                         |      |
|      |                                                                                                         |      |
|      | ***************************************                                                                 |      |
|      |                                                                                                         |      |
|      |                                                                                                         |      |
|      |                                                                                                         |      |
|      |                                                                                                         |      |
|      | ***************************************                                                                 |      |
|      | ***************************************                                                                 |      |
| 2007 | ***************************************                                                                 |      |
|      | ***************************************                                                                 |      |
|      |                                                                                                         |      |
|      |                                                                                                         |      |
|      |                                                                                                         |      |
|      |                                                                                                         |      |
|      |                                                                                                         |      |
|      | ***************************************                                                                 |      |
|      | ***************************************                                                                 |      |
|      |                                                                                                         |      |
|      |                                                                                                         |      |
|      |                                                                                                         |      |
|      | ***************************************                                                                 |      |
|      |                                                                                                         |      |
|      | ***************************************                                                                 |      |
|      |                                                                                                         | 1311 |

Fin de la opción G




No escriba en esta página.


Las respuestas que se escriban en esta página no serán corregidas.

## Opción H — Ampliación de fisiología humana

13. Las proteínas plasmáticas sCD62P y sCD40L están implicadas en la activación de las plaquetas sanguíneas. El factor de von Willebrand provoca que las plaquetas se adhieran a las paredes de los vasos sanguíneos. El fibrinógeno es un marcador de inflamación sanguíneo. Los cuatro son marcadores biológicos que indican riesgo de trombosis.

Durante los juegos olímpicos celebrados en 2008 en Pekín las autoridades chinas lograron reducir temporalmente los niveles de contaminación del aire restringiendo las emisiones de los vehículos motorizados y de la industria. Los médicos aprovecharon este evento para evaluar los efectos de la contaminación del aire sobre los marcadores biológicos antes mencionados. La gráfica muestra las variaciones porcentuales medias en los niveles de los marcadores biológicos que presentaron una serie de voluntarios durante el estudio.





[Fuente: adaptado de DQ Rich, et al., (2012), Journal of the American Medical Association, 307(19), páginas 2068-2078]

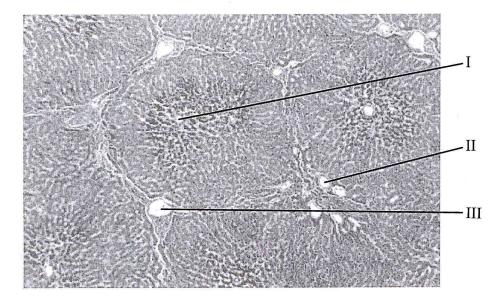


|   | 10   |       | . /   | . /    | TT |          | 7 | 2 | 1 |
|---|------|-------|-------|--------|----|----------|---|---|---|
| 1 | (Con | tınua | cion: | opcion | Η, | pregunta | 1 | Ì | 1 |

Las trombosis, incluida la trombosis coronaria, podrían ser una consecuencia de la acumulación de estos biomarcadores.

| (a) | Indique la función de las plaquetas en las trombosis.                                                     | [1] |
|-----|-----------------------------------------------------------------------------------------------------------|-----|
|     |                                                                                                           |     |
| (b) | Enumere <b>dos</b> características que deberían tenerse en cuenta al seleccionar el grupo de voluntarios. | [2] |
|     | 1.                                                                                                        |     |
| (c) | Indique la variación media de sCD62P de antes a durante la celebración de entre los juegos olímpicos.     | [1] |
|     | %                                                                                                         |     |
| (d) | Compare el efecto de los cambios en la contaminación del aire sobre sCD62P y sobre sCD40L.                | [2] |
|     |                                                                                                           |     |




(Continuación: opción H, pregunta 13)

| ] | Ξ | V | 78       | ıl   | ú    | e | 1   | a | . 1   | ni | įŗ | Ó | 5t | e | S | i     | S   | d          | e | ( | η | u | 9 | 1 | a | ( | 28 | al   | i | d | a | d | l | d   | e     | 1   | a | i | re | 2 | a | fe | ec | et | a | a | ıl | r | ie | 25 | 98 | gC | ) ( | d | e | tı | C | n | n | b | 0 | Si | S | • |   |   |   |   |   |   |   |   |   |   |   |  |
|---|---|---|----------|------|------|---|-----|---|-------|----|----|---|----|---|---|-------|-----|------------|---|---|---|---|---|---|---|---|----|------|---|---|---|---|---|-----|-------|-----|---|---|----|---|---|----|----|----|---|---|----|---|----|----|----|----|-----|---|---|----|---|---|---|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
|   |   |   |          |      |      |   |     |   |       |    |    |   |    |   |   |       |     |            |   |   |   |   | _ |   |   |   |    |      |   |   |   |   |   |     |       |     |   |   |    |   |   |    |    |    |   |   |    |   |    |    |    |    |     |   |   |    |   |   |   |   |   |    |   |   |   |   | _ | _ | _ |   |   |   | _ |   |   |  |
| 1 | • | • | •        | - 19 |      |   |     | • | •     | •  | ٠  | • | •  | • | • |       |     | 0 0        | • | • | • | • | • | ٠ | ٠ | • | •  |      | • | • | • | • |   | 0.0 | •     | •   | • | • | •  | • | ٠ | •  | •  | •  | ٠ | • | •  | • | •  | ٠  | •  | ٠  | •   | ٠ | • | •  | • | • | • | ٠ | • | •  | • | • | • | • | ٠ | • | ٠ | • | • | • | • | • | • |  |
|   | • | • | <b>:</b> | 2    |      |   |     | • |       | •  | •  | • | •  |   | • | 8 1   |     | 8 8        | • | • | • | ě | • | • | • | • | ٠  |      |   | • | • | • |   |     | •     | •   | • | • | •  | • | • | •  | •  | ٠  | ٠ | • | •  | • | •  | •  | •  | •  | ٠   |   | ٠ | •  | • | • | • | ٠ |   | ٠  | • | ٠ | • | • | • | ٠ | • | • | • | • | • | ٠ | • |  |
| 1 | • | • |          |      |      |   |     | • | •     | •  | •  | • | ٠  | • | • |       | 0.0 | 0 1        | • | • | • | ٠ | • | • | • | • | •  |      |   | • | ٠ | • | ٠ |     | •     | •   | • | ٠ | •  |   | • | •  | •  | •  | ٠ | • | •  | • | •  | ٠  | •  | •  | •   | ٠ | • | •  | ٠ | • | • | ٠ | • | •  | • | • | • | • | • | ٠ | • | ٠ | • | • | • |   | ٠ |  |
| , | • | • | •        | 274  |      |   |     | • | •     | •  | •  | • |    |   |   | 81 14 |     | <b>S</b> S | • | • | • | • | • |   | • |   | •  |      |   | • |   | • |   | e 9 | • ( ) |     | • | • |    | • | • | •  | •  | •  | • |   |    | • |    | •  |    | •  | •   |   |   | •  | ٠ | • |   | • |   | •  |   |   | • |   |   |   | • |   |   |   |   |   |   |  |
| 3 | • | • | •        |      |      |   |     | • | •     | •  | •  | • | ÷  | • | • | a   • |     |            | • | • |   | • |   | • | • | • | •  |      |   | • |   | • | • |     | •     | •   | • |   |    | • | • | •  | •  | •  | • | ě | •  | ٠ |    | •  | •  | •  | •   | ٠ | • | •  | • | • | • | • | • | •  | ٠ | ٠ | • | • | ٠ | • | ٠ |   | • | ٠ | • | • |   |  |
| 3 | • | • | •        |      |      |   |     |   | •     | •  | •  | • | •  | • | • | •     |     |            | • | • | • | ٠ | • | • | • | • |    | •    | • | • | • | • |   |     | •     | •   |   | • | ٠  | • | • | •  | •  | •  | • | • |    | * | •  | •  | ٠  | ٠  | •   | • | • | ٠  | ٠ | • | • | • | • | •  | ٠ |   | • | • |   |   | ٠ | • | ٠ | • | ž | • |   |  |
| 1 | • | • | •        |      | 6 19 |   |     |   | •     | •  | •  | • | ٠  | • | • | •     |     |            | • | • | • | • | • | • | • | • | •  |      |   | • |   |   |   |     | •     | •   | • | • | ٠  |   |   | •  |    | •  |   |   |    |   | •  | •  | •  | •  | •   | • |   |    |   | • | • | • | • | •  | • |   |   |   |   |   | • | • | • | • |   |   |   |  |
| , | • |   |          | 1 10 |      |   | . , |   | •:::: | •  |    | • |    |   |   |       |     |            |   |   |   |   |   |   |   |   |    | 0 24 |   |   |   |   |   |     |       | • 1 |   |   |    |   |   |    |    |    |   |   |    |   |    |    | •  |    |     |   |   |    | į |   |   | • |   | •  | ٠ |   |   |   |   |   |   |   |   |   |   |   |   |  |



(Opción H: continuación)

14. La imagen muestra una fotomicrografía de tejido hepático.



[Fuente: www.meddean.luc.edu/lumen/MedEd/orfpath/images/fig02x.jpg, última modificación de la página: 27 de junio de 2012]

| (a) | Las  | estructu  | ıras | I, II y II | II soi  | n ramificac | ioı | nes | de la | os tres | princip | ales | s va | asos s | anguíneos |
|-----|------|-----------|------|------------|---------|-------------|-----|-----|-------|---------|---------|------|------|--------|-----------|
|     | que  | irrigan   | el   | hígado.    | La      | estructura  | I   | es  | una   | ramifi  | cación  | de   | la   | vena   | hepática. |
|     | Iden | tifique l | as   | estructura | ıs II : | y III.      |     |     |       |         |         |      |      |        |           |

| II.  |  |
|------|--|
| III. |  |
|      |  |

| (b) | Describa el desplazamiento de los cloruros en el transporte de dióxido de carbono en |     |
|-----|--------------------------------------------------------------------------------------|-----|
|     | los glóbulos rojos de los capilares de los tejidos.                                  | [2] |

| • | 0 5  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |     |     | <b>e</b> : | • 9 | • | • | • | • | • | • |      | a te | <br>• | • | • | ٠ | • | •   |   |   | • | • |         | • |      | • | • | • | • | • | • | •     | • | • | • | • | • | • | ٠ | • | • | • | • | ٠ | ٠ | ٠ | • | • | • | • | ٠ | • | • | <br>• | • |
|---|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|-----|------------|-----|---|---|---|---|---|---|------|------|-------|---|---|---|---|-----|---|---|---|---|---------|---|------|---|---|---|---|---|---|-------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-------|---|
| • | 01.3 |   | • |   |   |   | • | • | • | ٠ | • |   | • |   |   |   |     | • 5 |            | •   | • | ě | ٠ | • | • | • | •    |      |       |   |   | • | ٠ | ٠   | ٠ | • | ٠ | ٠ |         | • | •    | • | • | • | • | • | • | •     | • |   | • |   | ٠ |   | • | ٠ | • | • |   | • | • |   | • | • | ٠ | • | • | • |   | <br>• | • |
| • | 0.9  | • |   | • |   | • | • | • | • | • | • | • | • |   | • |   |     | •   | <b>K</b> 9 | •   | • | • | ٠ | ٠ | • | • |      | •    | •     | • |   | • | • | ٠   | ٠ | • |   |   |         | • |      | • | • | ٠ | • | • | • | •     | • |   |   |   |   |   |   |   |   |   |   | • |   |   | • | • | • |   |   |   |   |       | • |
|   | e e  |   |   |   |   |   | • | • |   | ٠ |   |   |   |   |   |   | e 1 |     | •7 :       |     |   |   |   |   |   |   | o :• |      |       |   |   |   |   | · • |   |   |   |   | <br>. , | • | •: : |   | • |   |   |   |   | • : : |   |   |   |   |   |   |   |   |   | ٠ |   |   |   |   |   |   |   |   |   |   |   |       |   |

(La opción H continúa en la página siguiente)



[1]

(Continuación: opción H, pregunta 14)

| c) |   |     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | )e |   |   |   |   |   |   | • | )( | <b>D</b> 1 | r | 1 | a | S | ( | cé | elu | ul | a | S | 6 | ŗ | )11 | te | li | a | le | S | ( | le | el | ĺ | le | eo | n |   | pa | ar | a | • | at | S | 0   | rt | )e | er | L | [. |
|----|---|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|---|---|---|---|---|---|---|----|------------|---|---|---|---|---|----|-----|----|---|---|---|---|-----|----|----|---|----|---|---|----|----|---|----|----|---|---|----|----|---|---|----|---|-----|----|----|----|---|----|
|    |   |     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |   |   |   |   |   |   |   |    |            |   |   |   |   |   |    |     |    |   |   |   |   |     |    |    |   |    |   |   |    |    |   |    |    |   |   |    |    |   |   |    |   |     |    |    |    |   |    |
|    | • | 0.5 | • | • | • | • | • | ٠ | • | • | • | • | ٠ | • | • | • | ٠ | • | • | • | • | • | •  | ٠ | ٠ | • | • | • | • | ٠ |    |            |   |   |   | • | • | •  | •   | •  | ٠ | ٠ | • | • | •   |    | •  | ٠ | ٠  | • | • |    | •  | • | •  | ٠  | • | • | ٠  | ٠  | ٠ | • | ٠  |   | • • | •  | ٠  | *  |   |    |
|    |   | . 7 |   | • | • | • | • | • | ٠ | • | • |   | ٠ | • | • | • | • | ٠ | • |   | • | • | •  | • | ٠ | ٠ | • | • | ٠ | • |    |            |   |   |   |   |   | •  | •   | •  | ٠ | • | • | • | •   |    | •  | • | •  | • | • |    |    | • | ٠  | •  | • |   | •  | •  | • | • | •  |   |     |    |    | •  |   |    |
|    |   | 0.0 | • | • | • | • | • | • | ٠ | • |   |   | • | • | • | ٠ | • | • | ٠ |   | • | ٠ | ٠  | • | • | • |   |   |   |   |    |            |   |   |   |   |   |    |     | •  |   |   |   | • | •   |    | •  |   |    |   | • |    |    | • |    |    |   |   | •  | ٠  | • |   |    |   |     |    | •  | ٠  |   |    |
|    |   |     | • |   |   |   |   |   |   | • |   |   |   |   | • | • |   |   |   |   |   |   |    |   |   |   |   | • |   |   | ě. |            |   |   |   |   |   |    | •   |    |   |   |   | • |     |    |    |   |    |   | • |    |    | ٠ |    |    |   |   |    |    | • | • |    |   |     |    | •  | •  |   |    |
|    |   |     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |   |   |   |   |   |   |   |    |            |   |   |   |   |   |    |     |    |   |   |   |   |     |    |    |   |    |   |   |    |    |   |    |    |   |   |    |    |   |   |    |   |     |    |    |    |   |    |
|    |   |     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |   |   |   |   |   |   |   |    |            |   |   |   |   |   |    |     |    |   |   |   |   |     |    |    |   |    |   |   |    |    |   |    |    |   |   |    |    |   |   |    |   |     |    |    |    |   |    |



| 10  |       | 77  | 20.€    |       |
|-----|-------|-----|---------|-------|
| (() | ncion | H.  | continu | acion |
| V   | peron | 11. | Continu | ucion |

|                 | a activación de la pepsina y la tripsina. |  |
|-----------------|-------------------------------------------|--|
|                 |                                           |  |
|                 |                                           |  |
|                 |                                           |  |
|                 |                                           |  |
|                 |                                           |  |
|                 |                                           |  |
|                 |                                           |  |
|                 |                                           |  |
|                 |                                           |  |
|                 |                                           |  |
|                 |                                           |  |
|                 |                                           |  |
|                 |                                           |  |
| 2               |                                           |  |
|                 | 1                                         |  |
| L'              | ,                                         |  |
|                 |                                           |  |
|                 |                                           |  |
|                 |                                           |  |
| .,,             |                                           |  |
|                 |                                           |  |
|                 |                                           |  |
| *************** |                                           |  |
|                 |                                           |  |
|                 |                                           |  |
|                 |                                           |  |
|                 |                                           |  |
|                 | 7                                         |  |

Fin de la opción H

